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  __________________________________________________________________________________ 
 

Abstract - The surface reflectance anisotropy can be estimated by directional reflectance analysis through 
the collection of multi-angular spectral data. Proper characterization of the surface anisotropy is an 
important element in the successful interpretation of remotely sensed signals.  A signal received by a 
sensor from a vegetation canopy is affected by several factors. One of them is the sensor zenith angle. 
Functional data analysis can be used to assess the distribution and variation of spectral reflectance due to 
sensor zenith angle. This paper examines the effect of sensor zenith angles on the spectral reflectance of 
vegetation, example on cotton leaves. The spectra were acquired in a green house trial in order to address 
the question ‘how much information can be obtained from multi-angular hyperspectral remote sensing of 
vegetation?’ The goals of the functional data analysis applied in this paper is to examine the Functional 
Data Analysis approach was applied to analysis multi-angular hyperspectral data on cotton, highlighting 
various characteristics of cotton spectra due to sensor view angles, and to infer directional variation in an 
outcome or dependent variable with different zenith angles. 
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      __________________________________________________________________________________ 
 
Introduction  

The physical interpretation of hyperspectral remote sensing for vegetation has been hampered by anisotropic surface 
reflectance (Bruegge et al., 2000).  This is because vegetation properties are not generally perfectly diffuse reflectors, and 
sunlight reflected from vegetation exhibits a significant degree of anisotropy (Settle, 2004). The surface reflectance 
anisotropy can be estimated by directional reflectance analysis through the collection of multi-angular spectral data 
(Chooping et al., 2003; D'Urso et al., 2003;  Widen, 2004). Proper characterization of the surface anisotropy is an important 
element in the successful interpretation of remotely sensed signals. However, proper characterization of surface anisotropy 
needs perfect measurement of illumination and modelling. This is not an easy task in remote sensing. It involves 
consideration of factors such as land surface properties, sensor view angles, reflectance and scattering, and sun incident 
angles.  

This problem has received attention in remote sensing through research on multi-angular measurement of 
hyperspectral data. The effect of sensor viewing geometry on vegetation spectra can be assessed by measuring the spectral 
reflectance of the target at different sensor positions. A handheld spectroradiometer can be mounted on a goniometer, a 
hemispherical structure, to simulate multiple viewing angles and sensor positions. The importance of directional spectral 
reflectance is that different zenith angles can create variation in spectral reflectance, inhibiting the analysis of the spectral 
characteristics.  

Recent developments in multi-angular space borne hyperspectral remote sensing provide directional spectral 
reflectance of the vegetation canopies. The first step, however, is to measure the multi-angular spectral reflectance at 
ground level. Crucial factors that need to be considered when collecting multi-angular hyperspectral data are how the data is 
distributed along the wavelength, the variance of the data, and what additional information can be generated by collecting 
spectra from multiple angles.  

Data obtained with a spectroradiometer can be used to model the spectral reflectance. However, there are still 
assumptions that need to be considered in dealing with spectral data collected from the field such as variation and 
distribution of the data due to viewing sensor geometry. Sensor viewing geometry is related to the sun illumination. 
Handling this factor can be achieved by measuring multi-angular spectral reflectance and analysing them in functional 
relationship between factors affecting them and the spectral reflectance characteristics of the targets. The functional data 
analysis implemented in this research includes an assessment of the effect of smoothing basis functions, functional principal 
component analysis, functional linear modelling and functional analysis of variance (Ramsay and Silverman 1997, 2002) 
There are two types of analysis presented in this paper, wavelength basis and zenith- angle basis.  
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Materials and Methods  
Goniometer setting and cotton spectral collection 

A field goniometer was used with mounted of spectradiometer. A goniometer is a mechanised device that 
characterises radiance as a function of angle and allows the operator to acquire spectra at different zenith angles. The 
spectroradiometer was put one meter above the canopy attached to goniometer with a 10° instantaneous field of view 
(IFOV).  The spectroradiometer used is an Analytical Spectral Devices (ASD) Fieldspec UV-NIR CCD spectroradiometer 
(ASD, 1999). The ASD spectroradiometer records a spectrum from 325 - 1075 nm (Visible to Near Infra Red wavelenght). 
This device is post-dispersive, meaning it can be exposed much higher levels of ambient light outside laboratory controlled 
conditions. The average band interval is 1.5 nm. For the purposes of this research, a subset of spectra is used, selecting the 
spectral wavelength range 400 to 950 nm (412 bands).   

The cotton plant used in the trial is Siokra V-16 cultivar. This cultivar is a conventional and non-genetically 
modified variety (CSD, 2003), The cultivar were grown in a greenhouse experiment at the University of New South Wales. 
The temperature and humidity were maintained at 18-30°C with 55-70% humidity during the experimental growing season. 
The 25 cm diameter-pots were used to grow the cultivar. Watering was monitored to replicate water consumption during 
the growing period of the cotton cultivar at the field at Iffley Farm, between 410 mm and 610 mm during a seven-month 
growing period. Water consumption of cotton increases significantly through the plants’ development, during vegetative 
and generative period, and then decreases near harvest time. The cotton spectra were collected using the ASD 
spectroradiometer attached to the field goniometer (Figure 1). Calibration was performed for each measurement using a 
spectralon® standard reflectance (ASD,1999). 

 
Figure 1. Illustration of the goniometer set up for multi-angular spectral data collection 

 
To prevent unwanted background scattering and absorption from the surrounding area, a black plastic cover was 

placed underneath the canopy and over the surrounding area to minimise reflectance from the surrounding area. The 
spectroradiometer was located one metre above the foliage. A 10° spectroradiometer foreoptic was used to create a FOV 
area of 240.46 cm². Spectral reflectance readings were taken as the average of 25 readings and repeated five times for each 
view angle position relative to the target. The azimuth and zenith angles position of the sensor were determined using a 
compass and clinometers attached to the spectroradiometer.  

Spectral measurement was conducted under natural light conditions between 10 AM  and 2 PM during clear sky 
conditions. The hot spot effect was avoided by not measuring the spectra where sensor zenith angle and solar zenith angle 
were at the same position. The solar azimuth angle was assumed to have small variation during spectral data collection in 
this time. The direction of zenith angles to collect multi-angular reflectance was set facing northeast (45° azimuth) to 
southwest (225° azimuth). The angle between northeast to nadir is denoted using a positive sign and nadir to southwest 
direction is denoted using a negative sign. The zenith angles are 50°, 40°, 30°, 20°, 10°, 0°, -10°, -20°, -30°, -40°, and -50°, 
where 0° is the nadir position. 

Two factors need to be considered with the analysis of spectral reflectance data during functional data conversion, 
wavelength and zenith angle basis function analyses. The wavelength basis function treats the reflectance value as a function 
of bands (or channels). For the wavelength basis, the x value is the wavelength and y value is the reflectance. For the zenith 
angle function, the x axis is the angle and the y axis is the reflectance.  Figure 2 illustrates the difference between the analysis 
of wavelength and zenith angle basis functions. The wavelength functions treat the wavelength as the major component 
that affects the reflectance for individual zenith angles. Thus, every band can be retrieved in the plot at any individual zenith 
angle, such as at -50°, 50°, 0°, 40° and so on. Zenith basis functions assume that the zenith angle is the main factor that 
affects the reflectance for individual bands. We used a 20-basis function to represent the functional spectra for wavelength 
basis analysis, and 5-basis function to represent the functional spectra for zenith function for the January and February data.  
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   (a)      (b) 

Figure 2. Illustration of functional curve representation of the hyperspectral data, 
wavelength (a), zenith basis (b) basis analysis 

 
Functional data analysis routines  

The descriptive statistic functions consist of the mean and standard deviation functions of the cotton spectra was 
calculated. The mean and standard deviation of the two data sets were plotted to show the variance of the curve functions 
of the cotton spectra. Variance-covariance functions and the functional derivatives of the cotton spectra was generated in 
FDA (Ramsay and Ramsay, 2002; Ramsay and Silverman, 1997). The purpose of the descriptive statistics is to assess the 
nature of the data by observing the mean value and standard deviation function plots, variance-covariance function, and 
first and second derivative of the cotton spectra acquired with different zenith angles. The derivative of cotton spectra was 
set for wavelength basis analysis. The variance-covariance function was calculated for sensor zenith basis analysis.  

The basis function for spectral smoothing was applied using B-spline smoothing in FDA to the wavelength basis 
analysis (413 values), but not for zenith basis analysis due to the limited number of data points (11 angles).  In order to 
examine the smallest factors of smoothing for spectral curves of vegetation, different numbers of basis function (K) were 
assessed namely 5, 10, 15, 20, 30, 50 and 100 for the wavelength analysis. Then, the effect of the smoothing was examined 
by visual comparison of the smoothed spectra to the original spectrum, and by comparing the residual noise spectrum with 
each smoothing method to find the best fit to the data. 

The four principal components along with the residual and harmonic data were calculated. The main objective is to 
demonstrate the features of the functional principal component analysis results by recounting the variance value for each 
principal component of the cotton spectra, which, when plotted, will expose the dynamics of multi-angular spectra. A 
functional linear model can be used to make predictions, and so it was applied to the cotton spectral data to assess the 
effect of azimuth and zenith angles on spectral reflectance by comparing the functional linear curve, and followed by 
functional Analysis of Variance (fANOVA) to test the significance of the model. Direction of scanning (e.g. forward 
(negative zenith) and backward) from the nadir positions was used to display the directional spectra in a functional linear 
model. It is assumed that the different sensor positions at each zenith angle will relate to different spectral reflectance at 
nadir. This method was applied for wavelength basis analysis.  

 
Results and Discussion 
The effect of sensor zenith angle on spectral plots 

The spectral reflectance signature of the cotton spectra acquired at different sensor zenith angles shows a vertical 
‘shift’ (increase or decrease) of spectral reflectance values in the visible to NIR. Some wavelength regions above 900 nm 
have excessive noise. This spectral signature consists of 413 bands and 11 different zenith angles.  It is clear that forward 
direction (positive angles) tend to have higher spectral reflectance value in the Red-NIR regions. The functional spectral 
reflectance for all eleven-zenith angles with a total of 412 bands for both January and February data, fitted with 20-basis 
functions, are shown in Figure 4. Each curve represents a functional data object for each zenith angle (different color and 
line types) of cotton spectra for the spectrum range and gives a trend of spectral reflectance over different angles.  

There is variance across the zenith angles, with lower variance in the January data when compared to February 
data. For the January data, at zenith angles 0° (nadir), -10° and 10°, the first three functional spectra have high reflectance in 
the red to near infrared wavelengths (the red-edge) (see Figure 4). For the data from February, 0º, -10º and -50º, all show a 
shift in spectral reflectance in the Red –NIR. When compared, the 50° azimuth of the January and February data is similar, 
less than 0.4 or 40% reflectance for the cotton spectra. Noise is visible at above 900 nm, particularly for the February data. 
As is common for green vegetation, reflectance in the visible range was quite low, with peak response in the green. In the 
case of data collected from different angles using the goniometer, the range in reflectance for the visible region is important, 
showing directional variation in the visible to near infrared region. 
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The functional mean and functional standard deviation for the 11-zenith angles is shown in Figure 5. The 
functional mean and functional standard deviation for both datasets are similar except for a slight difference at 900 nm in 
the January data.  Both datasets have the same tendency and distribution, which is not surprising because the spectral results 
come from the same plant at different dates of acquisition. The functional derivative analysis of cotton plant spectra 
indicates spectral variation due to sensor zenith angles. The reflectance at +10° and 0° (nadir) are higher for both dates of 
spectral collection (Figure 6). The first derivative has shown some critical absorption of the wavelength for cotton for 
vegetation discrimination such as green, red and near infrared regions.  

 
 
 
 
 
 
 
 
 
 
 
 
 

       
 

Figure 3. Typical spectral signature of cotton plant acquired at difference zenith angles  
before the FDA process. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Spectral functional at different zenith angles using 20-basis for January and February data 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Functional mean and standard deviation of cotton spectra across the eleven zenith angles. 
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Figure 6. First derivative curve showing spectral variables for different zenith angles of 
cotton spectra acquired on 06 January and 06 February 2003 

 
Basis function for spectra smoothing 

Figures 7 and 8 show the smoothing results of multi-angle cotton spectra using different basis functions. The 
lower limit function determines the lowest function that can be applied to the data sets and still affect the smoothing basis, 
but not perfectly fit the dataset. The upper limit determines the number of basis functions that can show a perfect fit to the 
dataset, but not exceed the number of data points that need to be smoothed. In this experiment, the lowest basis function 
that can be applied to the data is five. Applying the 5-basis function show very smooth curve along the spectrum range, and 
the spectral data was shifted to a model far from the real data value, resulting in a poor representation of the absorption 
features of the vegetation spectra. Using 10-basis functions, the curve starts to follow the real data values. The function that 
is smoothed has limited curvature, depending on the number of basis functions used. The greater the basis used up to 20-
basis, the closer the curve line follows the original data values. The 50 basis curves provide no more variation than the 20-
basis curves. In this example, the 50-basis function can be considered as the upper limit for this data set. It is still possible 
to apply higher bases, but a basis of 412 must not be exceeded as this is the maximum number of range data value for the 
dataset.  Since the plots (Figures 7 and 8) are on the same scale, it can be seen that the range of variation in the polynomial 
closely matches the range of variation in the data. With the use of a 20-basis function, the line model fits approximately well 
to the real data, but there are still some points where the line model strays from the real data values. The use of a 30-basis 
function, the line model fits well to the real data. In addition, a 30-basis function is not much different to 50- and 100- basis 
functions. The 20-basis is sufficient to represent smoothed spectra.  

 
Figure 7. Spectral curves with different basis function models (January data), 

the 20 basis function curves give a good approximation of the data. 
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Figure 8. Spectral curves with different basis function models (February data), 

the 20 basis function curves give a good approximation of the data. 
 

The fitting basis function of spectral data (Figures 9 and 10) shows the construction of a smoothing curve of B-
splines with given coefficients. The use of the same basis functions (5-basis) on different zenith angles shows a variation in 
the residual fit (Figure 9) from 0.05 at Znt 8 (-40°) to 0.09 at Znt 6.  The results show that different residual numbers could 
determine the level of fit to the particular zenith angle. These findings indicate that the specific basis function needed for 
smoothing purposes depends on two factors: (1) the level of noise or variations of spectral data determines what basis 
function is required. More variation in the spectrum requires greater basis functions in order to obtain a better fit for the 
smoothed model to the original data, (2) the selection of basis for individual spectra can determine how well the smoothing 
line fits the data. The greater the number of basis functions used for a particular spectrum, the better the approximate 
models fits the data.  

 
(a)       
(b)  
(c)  
(d)  
(e)  
(f)  
(g)  
(h)  
(i)  
 

 
    (a)                                                                            (b)      

                
 
 
 
 
 
 
 
 
 
 
 
 

                                                 (c)                                                                         (d) 
Figure 9. Fitting the curve at 0° (nadir) view angle (Znt 6) for different basis; 5-basis (a),  

10-basis (b), 20-basis (c), and 50-basis (d) (January data. RMSr=Root mean square residual. 

5-basis 
model  

20-basis 
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Figures 10 shows the comparison of fitting spectral curves using 5-basis function for the four zenith angles(Znt 5, 

Znt 6, Znt 7, Znt 8, representing -10°, 0°, +10° and +20° respectively) and 30-basis function for smoothing at Znt 6 (0° 
nadir). The use 30-basis function for all zenith angles has zero residual for the January spectra. This result shows that level 
of noise due to the sensor view angles could be identified by examining the residual. The noise not only comes from sensor, 
but also from environmental conditions that may affect the spectral reflectance. In this example, the February spectra are 
noisier than the January spectra. The use of 30-basis functions on the January data displays no residual, but the February 
data still has residual value with 30 basis functions. The 30-basis function was used for the remaining analyses in this 
chapter. 

Through functional basis analysis, a 30-basis function was found to be the best for smoothing the data with 
minimal residual. Using lower a basis than 30 for the cotton spectra provided a poorer fit of the functional model to the 
original data. Values above the 30-basis function resulted in no further change to the approximate functional model. Thus, 
more than 30-basis is considered overfit to the curve. Various basis function test worked for wavelength basis analysis. For 
zenith basis analysis, 5-basis function still works well in representing an approximation of the basis function model. 
However, fitting the model to the original data was not properly fitted. The main important point for basis function for 
smoothing of cotton spectral data is that the smoothing using basis function can be estimated by inverting mathematical 
models of the Bidirectional Reflectance Different Function against directional reflectance data sampled at several different 
sensor view angles as with the soils. 

 
 

.  
(a) 

 
 
 
 
 
 

 
 
 
 
 

                                            
 
 
                                         (b) 

 
Figure 10. Fitting the curve at different view angle (Znt 5-to 8; 50°, 0°, -50° and -40°) 

for the same basis (5-basis) (a). The 30-basis functions for Znt 6 (0°) (b) show zero residual;  
a perfect fitting for January data. 
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Functional principal component analyses (FPCA) 

Figure 11 shows the bivariate plot of the principal component score for the first four principal components of 
January and February data; the second principal component was plotted against first, third against first, fourth against first 
and second against third. The harmonic values, a summary statistic used in analyses of frequency data display a clearly 
unordered pattern. Four principal component directions (eigenvectors) and the percent of total variation of each direction 
are shown.  In each case, the solid curve (black) is the overall mean spectra for the given wavelength range and the circle 
(green) and dashed (red) curves shows the effect of adding and subtracting a multiple of each principal component to clarify 
the effect of the components. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
                                              (a)       (b) 

Figure 11. Results of the fPCA (PCA 1 to PCA 4) on the multi-angular spectral data on cotton. Note the first principal 
component direction of first fPCA explains most of the variation 93.6% (January) (a), and 96.1% (February) (b) in the data. 

The shape of first fPCA indicates that most of the variation of the data occurs at the two angle measurements. 

The first principal component direction, fPCA, explains most of the variation, about 93.6% and 96.4% 
respectively for the January and February data. The variation occurs for all wavelengths, especially in the 700 to 900 nm. 
The fPCA value is essentially the common spectral variation over different zenith angles, and is due to the specific 
reflectance or absorption along the wavelength range for vegetation. The second principal component function, which 
accounts for 5.8% and 2.6% respectively for January and February, picks up the differences between high and low 
reflectance values regarding the NIR regions. The third and the fourth components account for less than one percent of the 
variation. These could be spurious and therefore do not provide useful information, contributing to error effects in the 
spectral analysis.  An important aspect of PCA is the examination of the score function of each curve on each component. 
Each angle is identified by the level given to the angles, as described earlier. Some positions of the score have been adjusted 
to the same degree of score component-scale to improve legibility. Variation of spectral data was almost indistinguishable 
from the harmonic score values. The -10°, 10° and 0° appear in the same order for the first three harmonic comparisons. 
The rest of data points are clustered in the adjacent values, except for harmonic 2 versus harmonic 3 (Figure 12). The -10°, 
0° are in the upper right corner for January data because they have a higher reflectance value in the Red-NIR than most of 
the other zenith angles (on PCA 1). Similarly, the -50°, 20°, 0° and -30° February data are higher in spectral reflectance in 
this region than most of the other zenith angles.  

The results of functional principle component analysis of the wavelength basis analysis vary for each date of 
collection and sensor zenith angles. The first functional principle component of zenith angles accounts for 93.6% and 
96.4% respectively for January and February data. The variation of the first fPCA was high in the NIR reflectance. This 
region basically is sensitive reflectance location for most green vegetation. The second fPCA accounts for 5.8% and 2.6% 
respectively for January and February, picking up the differences between high and low reflectance values with respect to 
the NIR regions.  
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This second fPCA still provide the information of spectral reflectance, especially below 700 nm wavelengths. 
Vegetation pigment and chloroplast play important role in this region (Lichtenthaler et al., 1996; Yoder and Pettigrew-
Crosby, 1995). Thus, the second fPCA provides important information on plant physiology. The third and the fourth fPCA 
account for less than one percent of the variation. These results could be spurious and so do not provide useful information 
which is contributed to a large error effect in the spectral analysis. The key point of using fPCA for January and February 
data of cotton spectra is that the variation for both data is not much different in the distribution of variance explained for 
the first four fPCA. February data has a slightly higher variance for the first fPCA. 

 
Figure 12. Principal component scores of second fPCA versus first fPCA, third fPCA versus first fPCA, fourth fPCA 

versus first fPCA and second fPCA versus third fPCA for January and February 2003 data. 
 
Conclusions 

 Various characteristics of cotton spectra due to sensor view angles have been considered in the results, which 
indicate directional variation as an outcome of the dependent variable with different zenith angles. Two principal 
approaches have been used to represent cotton plant spectra in the FDA process: wavelength and zenith angles. These 
result in different curve function output, the basis function, functional analysis of variance and the linear model of multi-
angular cotton spectra. The spectral noise produced by the sensor presented in a smoothed curve approximation has 
different RMS residual, depending on the basis function and zenith angles. The use of different numbers of basis functions 
clearly affects the fit of the spectral curves obtained from eleven-zenith angles. One implication of the findings from this 
directional analysis of multi-angular spectra of cotton is that the spectral reflectance data can be considered as functions. By 
using a functional approach for modelling, the smoothing, predicting and analysis of the cotton spectra can be achieved.  
However, the main implication is that there is only a very small amount of additional information provided by multi-angular 
measurements within the range of zenith angles assessed. 
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